Dimension Reduction in Multivariate Linear Regression

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dimension reduction and coefficient estimation in multivariate linear regression

We introduce a general formulation for dimension reduction and coefficient estimation in the multivariate linear model. We argue that many of the existing methods that are commonly used in practice can be formulated in this framework and have various restrictions. We continue to propose a new method that is more flexible and more generally applicable. The method proposed can be formulated as a ...

متن کامل

Convex optimization methods for dimension reduction and coefficient estimation in multivariate linear regression

In this paper, we study convex optimization methods for computing the nuclear (or, trace) norm regularized least squares estimate in multivariate linear regression. The so-called factor estimation and selection (FES) method, recently proposed by Yuan et al. [25], conducts parameter estimation and factor selection simultaneously and have been shown to enjoy nice properties in both large and fini...

متن کامل

Moment Based Dimension Reduction for Multivariate Response Regression

Dimension reduction aims to reduce the complexity of a regression without requiring a pre-specified model. In the case of multivariate response regressions, covariance-based estimation methods for the k-th moment based dimension reduction subspaces circumvent slicing and nonparametric estimation so that they are readily applicable to multivariate regression settings. In this article, the covari...

متن کامل

Dimension Reduction of the Explanatory Variables in Multiple Linear Regression

In classical multiple linear regression analysis problems will occur if the regressors are either multicollinear or if the number of regressors is larger than the number of observations. In this note a new method is introduced which constructs orthogonal predictor variables in a way to have a maximal correlation with the dependent variable. The predictor variables are linear combinations of the...

متن کامل

Sparse Reduced-Rank Regression for Simultaneous Dimension Reduction and Variable Selection in Multivariate Regression

The reduced-rank regression is an effective method to predict multiple response variables from the same set of predictor variables, because it can reduce the number of model parameters as well as take advantage of interrelations between the response variables and therefore improve predictive accuracy. We propose to add a new feature to the reduced-rank regression that allows selection of releva...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions on Machine Learning and Artificial Intelligence

سال: 2019

ISSN: 2054-7390

DOI: 10.14738/tmlai.71.6070